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An analysis of the transient heat transfer between a thin circular tube

and the incompressible fluid moving through the tube is made for the case
where the temperature of the inlet fluid is kept constant - Both radial con-
duction of heat in the wall and the heat loss at the outer surface of the
cylinder are taken into consideration. It is shown to be especially easy to
calculate temperature of both fluid and tube in the initial period by means
of the attached figures.

So far it is common to use the temperature of the wall caiéulated by the
assumption that it is constant radially. It is shown that for the insulated
tube in the initiasl period such temperature is.equal to the_temperéture of
the outer surface of the tube. The temperature of the inner surface of the

tube may be appreciably different from such temperature even for the metallic

T

tube. The difference is extremely large for the tube made from insulating

i material. ) ) ..
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specific heat at constant pressure of inner fluid,

keal/kg deg C

thickness of the wall

dimensionless functions defined by equations (24)
confluent hyper-geometric function

dimensionless functions defined by equations (45a)
dimensionless functions

mass flow per unit area, kg/m? hr

non-dimensional functions defined by equations (L45b)

modified Bessel function of the first kind and of

heat capacity per unit volume of tube material, kcal/m® deg C

vth order

thermal conductivity of tube material, kcal/m hr deg C

thermal conductivity of fluid kecal/m hr deg C
dimensionless constant, k/RU,

dimensionless constant, k/RU;

dimensionless constant, pcpk/choR

modified Bessel function of the second kind and of
length of the tube, m

dimensionless constants

dimensionless function

diménsionless funqtion

Laplace transform of o

inverse Laplace transform of B
Nusselt number, 2RUO/kf, dimensionless
variable of Laplace transform
pressure of the inner fluid, atm

Prandtl number, pcp/kf, dimensionless

vth

order
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radial distance, m

inner radius of the tube, m

Reynolds number, 2RG/u, dimensionless

timé, hr

temperature of inner fluid, deg C

temperature of tube, deg C

inlet temperature of inner fluid, deg C

temperature of outer fluid, constant, deg C

film coefficient of heat transfer between inher fluid and tube
surface, kcal/m2 hr deg C

film coefficient of heat transfer between outer fiuid and tube
surface, kcal/m® hr deg C

velocity of inner fluid, m/hr

axial distance, m

2l

Jp

dimensionless constant, (1 + a)Ui/Uo

dimensionless constant, (M/N) - 1

dimensionless constant, a(l + a)

dimensionless constant, a* + 1

dimensionless constant, A + 1

dimensionless function hefined by equation (14)

(Tz - T,)/(Ty - Tg), dimensionless

£(8)

Lé, dimensionless

2LUOI/Rch, dimensionless

r/R, dimensionless



n* 2Uot/a(2 + a)CR, dimensionless

2 (T2 - Tg)/(Ty - Tg), dimensionless

K dimensionless constant defined where utilized
vl viscosity of the inner fluid, kg/m hr

13 2UOX/Rch, dimensionless

o) density of inner fluid, kg/m3

T Np, dimensionless

® Fourier number, kt/CR2, dimensionless

i defined by equation (17), dimensionless

(g, ) e-C_T Io(2 JTr), dimensionless

v*(g,n%) e-g-n* Io(2 JEn¥), dimensionless
Subscript
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INTRODYCTION

For any intermittent or blowdown hypersonic wind tuﬂnel it is required to
establish an air flow at elevated values of stagnation temperature. Thus, air
is preheated in a heater and led to the test section through a settling chamber
and nozzle. For the design of such components of the wind tunnel it is
required to determine'the transient:temperature of the wall of each compcnent
as well as the temperature of air. This problem may be reduced to determine
the transient heat transfer betweeh a circular tube and the incompressible
fluid flowing through the tube, since the main flow field is subsonic and the

effect of compressibility can be neglected.




Such a problem has been treated aslready by several investigators. Rizika[l]l
calculated the transient temperature of fluid teking into account the heat loss
at the outer surface of the tube. His result is inaccurate and does not contain
the analysis of the temperature history of the wall. Judd[2] calculated tran-
sient temperature of both fluid and wall for'the insulated tube. We extended
Judd's calculation so that the effect of heat loss at the outer surface of the
tube was included[3]. In these treatments it was assumed that the temperature
of the wall is constant radially. The use of such an assuggﬁ}bn may be Justi-
fied if the thermal conductivity of the material of tube is large. Indeed,
this was verified experimentally by Judd for a copper tube.

For the high temperature and/or high pressure application such as a hyper-
sonic wind tunnel, however, we are forced to use such material as stainless‘w
steel or ceramics. For these materials thermal conductivity.{%’smaller and

the validity of the assumption is doubtful. Therefore such an assumption is

replaced by a more plausible assumption of the thin wall in this paper.

ANALYSTS

The following éssumptions are imposed on the solution:

1. The temperature of inner fluid is function of time and axial distance
from the inlet only.

2. The temperature of tube is function of time, axiel distance from the
inlet, and radial distance from the axis.

3. The temperature of outer fluid is constant.

4. The effect of thermal conduction is negligible in the axial direction.

5. The velocity of inner fluid is axial, conétant, and uniform.

6. Both the inner and the outer radii of the tube are constant, and the

ratio of the difference between these radii to the inner radius is small.

INumbers in brackets designate references at end of paper.



7. Material constants do not depend upon temperature.

8. There are no energy sources within the tube material itself.

9. The film coefficients of heat transfer between the fluid and tube are
uniform and const;nt over the inner and outer tube surfaces for a constant
fluid mass flow rate.

10. The effect of radiation is negligible.

11. The ratio of the thermal capacity per unit volume of air to that of
tube material is negligible.

Consider the system shown in Fig. 1. Let an incompressible fluid be flow-
ing in a circular pipe with a flow rate G; the temperature of this fluid at
the axial distance x from the inlet and at time t is Tl(x,t). The tempera-
ture of the circular pipe is To(x,r,t), where r is the radial distance from
fhe axis. The temperature of the fluid outside the pipe is assumed constant
and equal to Tg.

Equating the sum of the thermal energy crossing the boundary of an ele-

mental section of fluild gives

3Ty 3T, 3%1, 2UO
Ge + pCpy — - k = - [Ty - Ta(x,R,t)] (1)
P37t P Xt f 52 [Ty a( )
Similarly, for an elemental section of the wall, one obtains
2
dFT 3Tz O°T dTs
2 L2, =_¢ (2)
ore r Tk ot

Now we can neglect the third terms on the left-hand sides of equations (1)
and (2) by assumption 4. Adopting the nondimensional variables, these equa-

tions are reduced to

2+ k2= 5(5,1,0) - (3)
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where

C 2UoR

Since k/(2UoR) = 0(1), K 1is negligible by assumption 1l. Therefore
equation (3) reduces to

%g + 6 = 5(¢,1,p) (5)

Equations (4) and (5) are fundamental equations for this analysis.

——

Initial conditions are given by

6(&,0) = 8(,n,0) = 0 (6)
Boundary conditions are
6(0)(9) =1 W .
ko <§%> =6 - 8(8,1,9) & -
= (7)
¢1@% = 8(¢,1 + a,0)
n=1+a J

After the following Laplace transformations

e agm=fmdgwgwm

(o]

'-‘C“;(E:pr) =f 6(§,n)cp)e'P(qu)

o

and using equation (6), equation (4) is reduced to

9%
on=

The general solution of this equation is given by’

Be,m0) = aa(b,a)Tolen) + ga(E,@ibolon) (8)



where a = JE, and gy, and gz are dimensionless functions to be determined

later. Using this equation, equation (5) is reduced to
36 | =
5 * 0 = Tola)ga(,a) + Ko(a)ea(t,e) (9)

Boundary conditions, equations (7), are transformed to

6(0,p) =74, (10a)
-ko@@ _ 7 - 5(e,1,0) (100)
n=1
a€> - :
-k = = 5(g,1 + a,a (10c)
l<an N ( a,a) c

Substituting equation (8) into equation (10c) gives

Ko(B) - k1aKa(B)
e1t,e) = - 3 p Ty (6 (11)

Using equations (8) and (11), equation (10b) reduces to

2]
() - kaoKa(B) K, (B) - k10K (B)

0 (o]
o {l;okBH Tata(ey () * Kl(“)} " Io(B) + K1al1(B) Io(a) + Ko(a)

g2(§:¢") =

(12)
Putting these expressions for g1 and gz into equation (9) gives
Y= —
8_2_ = - '}’9’ (1’3)

where
-1

1 Io(@)Ky(B) - I (B)K(a) - kaafI (a)Ka(B) + Il(smo(a)}} (1)
P [l T koo I1{a)Ko(B) + Io(B)Kila) - klafll(@)Klﬁﬁ) - Il(B)Kl(dD}

The solution of eguation (13), satisfying the boundary condition (lOa), is

given by

3(e,p) = pre 7t (15)




Substituting equations (11) and (12) into equation (8) gives

8(&,n,9) = [Ko(B)Ig(an) - To(B)Ky(an) - kiafKi(B)Io(an) + I:(B)K (an)}16/¥
| (16)
where
¥ = Ko(B)Io(@) - Io(B)Ko(a) - kao{Ka(B)Io(aw) + I1(B)Ko(x)}
ko[ Ia(@)Ky(B) + Io(B)Ka(a) - kaafTi(a)Ki(p) - Ia(p)Ka(a)}]  (17)

In general it is not easy to get the inverse Laplace_EEEpsformations of
equations (15) and (16). Therefore we restrict our considerations to the cases
where the wall of the tube is thin and the ratio of the thickness of the wall

to inner radius of the tube i1s far less than unity: a << 1. Since B= (ld-a)a,

(l+a Z(2a+a2) <> v+n -

n=0

(v 2 (" Eor e @ Kyn(e)
n=o0

one has

I,(B)

il

K, (B)

Therefore, neglecting the terms of 0(a®), one obtains

To(@)o(8) - To(p)Ko(a) = Ta(e)Ka(p) - Ta(B)Kale) = - & (2 - &) |
To(a)Ka(p) + Ta(8)Ko(a) - <l _a) —+( ) o
T1(@)Ko(B) + Io(B)Ka(a) = 5 + 5 82
I (a)K1(B) - I2(B)Ky(a) = - %’(2 - a) J

Substituting these expressions into equations (14) gives

7 = L<l- - lf M> » (19)
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Wwhere
2kl+ (l - kl)a

L= 2k + {(kl/ko) + 1 - kl}a <1
y - Hot2lt 2(1-ky)a =~ (L -2ky)a2

koal2ky + {lk1/ky) + 1- ki lal
N=M 2

- {gkl + (1 - kl)a}a

Thus equation (15) is rewritten as

—

8(t,p) = %expgl%a (20)

Now one has

£-ll:}- exp<pf_‘ M):I = e-MPIO(E Jip) + ML¢e-mIo(2m)d¢ (21)

b

whose derivation is given in eppendix. Therefore one obtains .

6(&,9) = e‘Lg{e‘M“’Io(e VINED) + Mf@e_mlo(www)dcp} (22)

O

Combining the equations (16) and (18) together with the following equations

Ko(B)To(an) - Io(B)Kolan) = - 7 f2a - &% - 2(n - 1) + (n - 1)3}

Ka(B)Tolan) + Ta(B)Kolan) = (1 - &+ a2) 2+ Efa - (n - 1)}2

where the terms of O(as) are also neglected gives

8(¢,n,p) = £1(n)8(k,p) + Ma(n)eHE p(le, ) exp<po€M> (23)
where

oo (-l | (o)
(ko/kl)a2 + ko(2a - a2) + a2

f1(n)

2k, + 2(n - 1) - (g - 1)%

) - (2k
2ko + 2ky + 2(1 - ky)a - (1 - 2k;)a2 £1(n) (2kv)

1

£2(n)

Now one has

x-l[P(pl+ M) exp(pﬁ M>] =n/c:(Pe-MPIo(2 VAp)ap | (25)



whose derivetion is also given in appendix. Therefore the inverse Laplace

transformation of equation (23) is obtained as

P
8(&,1,0) = £a(n)e(e,0) + Mf2(n>e-L§f e-MPr (24 INeg)dp (26)
(o]

Using ¢ =1L&t, 7 =Ny, A= (M/N) -1, B=A+ 1 =M/N, equations (22) and (26)

are reduced to

o(t,7) = e ATy(¢,T) + BfTe'AW(C,T)dT | (27)

o

T
5(¢,m,7) = £1(n)e~AT¥(¢,7) + B {fl(n) + fz(n)}f e BTy(¢,r)ar  (28)
(o]

respectively, where

¥(t,7) = e S I(2 ) (29)
Since £1(1) =1 - L, £1(1 + a) = 0 and Bf5(1) = L, one obtains
5(¢,1,7) = (1 - L)e AT¥(¢,7) + (B+ L - BL)fTe-AW(c,T)dT (30)
(0]
8(¢,1 + a,T) = Bfo(l + a)fTe‘ATw(C,T)dT (31)
(o]

where
2%k (1 - a + a2)

2
2ko + 2a - a2 + 2k (1 - a + a?) (32)

£2(1 + a)

Equations (30) and (31) give the temperature of inner and outer surface of the

tube wall, respectively. Moreover one gets
3(0,1,7) = fan) + £2(n)(1 - e757) (33)
which gives the temperature distribution in the tube wall at entrance section.

DISCUSSION

First it will be shown that the solutions obtained in the previous section
tend to the steady solutions when T tends to infinity. Here the steady solu-
tions are the solutions of the equations (4) and (5) where 35/0¢p 1is assumed to

vanish:
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o5(t) = e™"E (34)
5s(§ﬂl) = (1 -« - % 1n n)e~"é , (35)
where
‘= ko

k
k0+l+1a+1n(l+a)

Neglecting the terms of O(as) and considering O <n - 1 <a<1lgive

2kok 1
Kg = = - § ;
2ko + 2k3 + 2(1 - k1)a - (1 - 2k;)aZ

and

K

1l -k - g

1n 7

1 - n[l + 'klg{(“ - 1) - % (q - 1)2}] = £1(n) + £2(n)

wf (D3

{£2(n) + £2(n)} exp{-( - %) ;} | ;37)

Thus one gets

65

i

and

S5

Now tending T to infinity in equation (27) gives

”G(C,oo) = Be-Efwe'BTIo(z JEr)ar
o]

—~—

Since
(o)

f ooe'BTIo(zJTT)dw = 255 f ooye'bayzlo(y)dty
(o]

where y = 24Tt and b2 = B/4¢, and

®  p2 1 /1
lYe yzlo(y)dy—zbgexp<rb‘§>

[see reference 3, equation (35)], this equation is reduced to

o8, = exaf- (1 - 3) ¢} N G
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In a similar manner, from equation (28), one obtains

5(5,mm) = {£2(n) + f2(n)} exp{-( - %) C} (39)

Comparing the equafions (36) and (37) with equations (38) and (39), it is clear
that the present solutions tend to the steady solutions when T tends to
infinity.

Next it will be shown that the present solutions tend to the solutions

obtained by assuming that k = «»[3] when k tends to infinity. When k

tends to infinity one obtains

L =1
1 Ui Uz
Bz = "= +1= (1L+a)—+1=p*
1 -a+a2Uo ( ) Uo P -
A= o* -
-~
2
i, (1 -a,+a)2Uot: 2Uot - (40)
~a(2 - a)CR a(2 + a)CR

o)

£1(n)

Bfa(n)

1

where * denotes the symbol used in reference 3. Thus it is proved that the
present solutions coincide with the previous results [equations (25) and (26)
of reference 3], that is

6

n¥ .
e~ N¥yx 4 px f e~ N*yxgn*
o]

Tl*
) =\/n e~*N¥yxgn*
o

where ¥* = e-E-M*I (2JENF), to the order of a.



Solutions for AT << 1 will be called as "initial solutions" in this paper.

INITTAL SOLUTIONS

1L

Neglecting the terms of O(A272), equations (27), (28), (30), and (31) are

reduced to

6(¢,T)

5(§>U,T)

5(6,1,7)

5(¢,1 + a,T)

respectively,® where

Fl(gyT) - AFz(Q:T) = A2G2(§:T)

Ar2()FL(E,7) + £2(n)eal(l, 1)}

- A[T1(n)F(E,7T) - fa(ﬂ){GLKC;T)

- Gz(Q;T)}] - AZ{fl(n) + fa(ﬂ)}Gz(Q;T)

It

{(1 - L)FL(E, ) + Lea(E, )}
- Al(L - L)Fa(6,7) + Laa(E,T)]

- A3(1 - L)oa(6,7)

1

£2(1 + a) [ (¢, ) + A{GL(E,T)

- Ga(L,m} - A2 G2(g,m)]

.
Fi(l,7) = ¥ + var
(o]
.
Fo(l,T) = ¥ - (L - 7)va
26m) = fo -
.
,T) = ¥a
G1(¢,7) JC T
= fTTYd
Ga(g;T) JQ T

(41)

(k2)

(43)

(Lk)

(452)

(45b)

In the previous report [3] it was shown that F; and Gy are temperature

of inner fluid and of tube wall, respectively, assuming that the latter is

constant radially and that there is no heat loss at the outer surface of the tube.

2T¢ <1, it is easily shown that AZGo({,7) = O(A®r®), so that terms

proportional to AZGo({,T) can be eliminated from these equations.




Graphs of the functions F;, Fo, Gi, and Gz have been publisﬁed in that
report and presented here also (as Figs. 2(a) through 2(h)) for the reader's
convenience. Each term of the solutions can be easily calculafed by means of
these figures.

If there is no heat loss at the outer surface of the thin tube, one

obtains Uy = O and k1 = w, so that A = 0,° £f5(1 + &) = 1 and

L=[1+a/fk(2-a)}l™ (46)

Therefore temperatures of inner fluid and of outer surface of wall of insulated
thin tube are equal to those of inner fluid and of tube wall, respectively,
which are calculated by the assumption of radially constant wall temperature.
Temperature of inner surface of wall of insulated thin tube is given by the _ .

linear combination of these temperatures:
8(¢,1,7) = (L - L)Fu(&,7) + LGa(¢,7) (47)

where L 1is given by equation (L46).
The first order effect of heat loss at the outer surface of the wall

might be easily taken into consideration for many cases of practical importance.

For this purpose, équation (4k2) is rewritten as
6(§,H:T) = {fl(n)Fl(Q;T) + sz(ﬂ)Gl(Q)T»
- A{fl(n)Fz(Q,T) + fz(ﬂ)Gz(C;T» - AE{fl(n) + fz(ﬂ)}Ga(C;T)

Usually the second and the third terms are far smaller than the first term.

In such cases this equation is reduced to

5(§,U,T) = fl(n)Fl(gyT) + sz(ﬂ)Gl(C,T) (he)

3It follows that each first term of equations (41) through (4%) represents
the solution for the insulated tube, and the second and the third terms

represent the correction for the heat loss.



In a similar manner one obtains

6(¢,7) = Fu(t,7) | (49)
5(6,1,1) = (L - L)FL(,7) + LGL(E,7) (50)
5(¢,1 + a,7) = Bfo(1 + a)Ga(&,T) (51)

Thus there is no appreciable effect of heat loss on the temperature of inner
fluid. If a and a/k; are small quantities, a/ko = 0(1) and the second order

small quantities are neglected, one gets

Bfg(l + a)

1 - a/(2k;) " (52)

- 2 . i - ky aZ
2 + a/k, (2 + a/ko)2 kok1

(53)

SAMPLE CALCULATION

As examples temperature distributions of both wall material and air have
been calculated for a settling chamber of a hypersonic wind tunnel. Here
three kinds of material are considered as possible tube material for such a
wind tunnel: stainless steel (18Cr-8Ni), alumina brick gnd alumina castable.
Dimensions ;%\thg\tube‘are: |

length of the tube L =3m
inner radius of the tube R=0.325m

thickness of the wall d =0.041l m

'

so that a = d/R = 0.126. U, was calculated from the empirical relation[4]

Nu = 0.023 Re®"8pr°*

for the fully developed turbulent flow in a circular pipe where Nu = 2RUo/kf,
Re = 2RG/u, Pr = pcp/kf and p 1is the viscosity of air. Uj; was calculated

by means of the empirical formula [L]
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0.25
5

<T2> - T
, kal/m® hr deg C

Up =029 \— 53—

where <T5> is the mean value of the temperature of the outer surface of tube.
Since <To> was not known a priori, it was determined by a trial and error
‘procedure. Constants for inner air are given by Table 1, where M is design
Mach number and P is pressure. Constants for the settling chamber are
given by Table 2, where {/x, 7/t, and all dimensionless quantities are the

mean values of four which correspond to the four cases in Table. 1. The vari-

ation for A, L, and fo(1 + a) for these four cases is léss than 7 percent.
Calculated temperatures of inner air and of inner and outer surfaces of tube
wall are shown in Table 3 for both inlet ({ = 0) and exit ({ = {1) except the
temperature of inner air at inlet which is equal to unity. Since AT < 0.021,
initial solution was used for the calculation. The temperatiine of tube wall

is highest at inlet. This temperature was also calculated by the former
method[3] where the téﬁperature of tube wall was assumed constant radially.

The results are included in Table 3 as 5(0,T) and S(O,n*j. From equation (40)

one obtains

* _ 2 - a .

) (2 +a)(1l - a+ a?)

so that the difference between‘ n¥ and T 1is O(a2). It may be clear from
Table 3 that o(T) is greater than ®(n*) in the amount of 0(a®). Thus it
could be concluded that the thin-wall approximation estimates the temperature
of tube wall higher than the accurate value. TFrom the designing point of view
this overestimate is in safety side.

The temperature of inner air was also calculated by the former method
for € = ;. This agrees with the present result‘in three figures for all
cases. This confirms equation (49). It might be seen that Tables 2 and 3

also confirm equations (50) through (53).
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The temperature distributions in the tube wall are presented in
Figs. 3 through 5. It will be seen in the refractory materials temperature
decreases rapidly near the inner surface and then decreases gradually to the

temperature of the outer surface.
CONCLUSIONS

There is an appreciable temperature gradient in tube wall even if the
material of the tube is such metal as stainless steel. ?Eif temperature
gradient is very large if the material is such insulating refractory materials
as alumina brick and alumina castable, in which case temperature decreases
rapidly near the inner surface and then decreases gradually to that of outer
surface. o

Temperature of tube wall calculated by the assumption that this temperature
is constant radially is eQual to the temperature of outer surface of the tube
in the initial period; provided a/k; << 1. It might be dangerous to use

such temperature for the design since the temperature difference between

inner and outer surfaces is sometimes very large.

Temperature of inner fluid in the initial period calculated by the thin-
wall approximation is the same as that calculated by the assumption of

radially constant wall temperature.
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APPENDIX

1. Derivation of equation (21)

One has, from reference 5, page 24k,
A
V) S s[j% 11(2~/Acp)]
and from reference 5, page 129,

F(p + M) = .t[e’MPf((p)] [ (54)

where F(p) = £[f(p)]. Combining these equations gives
A A .
e}cp%—rﬁ> -1 =£l:f';e Mle(QJTEP)] -

By the convolution theorem, one obtains

.s:'l[% {expg‘f—ﬁ) ] }] = e M1 (2/Ep) - 1 + Mj;¢e'mlo(2m)dm

Since 1/p = £[1] and

Looxp(—2 ) o Llep(=A_) . 1b+ 2
p P+ T PO N P

one gets equation(2l).
2. Derivation of equation (25)

One hes, from reference 5, page 25,
p-leA/P = £{Io(24Ap)] :

Combining this and equation (54) gives

o R

By the convolution theorem equation (25) is derived.
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Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

2(a)

2(v)
2(c)
2(4)
2(e)
2(f)
2(g)
2(h)
3(a)
3(p)
h(a)
4(b)
5(a)
5(p)

FIGURE CAPTIONS

Thin circular tube.

Temperature

Go=1-(1+ Q)e-g.

Temperature
Temperature
Temperature
Temperature
Temperature
Temperature

Temperature

Wall temperature
Wall temperature
Wall temperature
Well temperature
Wall temperature

Wall tem@erature

functions

functions

functions

functions

functions

functions

functions

functions

at

at

at

at

at

at

at

at

£
g

2k

O: F1=1,Fs=0, G, =1 - e-g,

0.01:
0.03:
0.1:

0.3:

1: Fi(1,0)

3: F1(3,O)

10:

distributions for

distributions for

distributions for

distributions for

distributions for

distributions for

F,(0.01,0)

]

0.99005.
0.97045.
0.90484.

F1(0.03,0)

F1(0.1,0)

F,1(0.3,0) = 0.74082.

0.36788.

]

0.049787.

F1(10,0) = 0.000045.

stainless steel tube at inlet.
;tainless steel tube at exit.
alumina bripk tube at inlet.
alumine brick tube at exit.
alumina castable tube at inlet.

alumina castable tube at exit.

Nisiki Hayasi and KenJji Inoue
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